Planck Time and Planck Length Charted Together

Is There Order in the Universe?

Space Entrepreneurs and Science Fiction Blockbusters

Might this necessarily be the smallest-biggest-simplest scientific experiment?

In just 202.34 to 205.11 notations (base-2 exponential), you’ve got the entire universe in your hands. It all started with simple geometries. Obviously, this is an ideal universe that is highly-ordered and fully-relational, but what a starting point for more research! And, in the middle of it all, somewhere between the 101st to 103rd notation, there surely appears to be a concrescence of meaning from both directions.

A quick ten-step tour of the Big Board-little universe and the Universe Table

An introduction to ten different sections of both charts from notation 1 to 205+

Introduction / Tour Overview:    (please start here)
Take the first survey! Start here with the consent and disclaimer.

The next tour and survey. More in preparation – Access all right here.

     –   The Universe is Very Small
     –   The Universe is Very Simple
     –   Very Big and Extremely Small Numbers (Make friends).
     –   Survey #2.  Disclaimer comes first, then five simple questions.
A research paper and introduction by Bruce Estes
Reflections on “Walk the Planck” by Bruce Camber, an adviser to Bryce Estes
Title board: 22″ wide 35″ high (total display, 44″ wide and 70″ high)

________________________________________________________________________________________________________________________________

Notes about Look-Feel and Navigation: If the line just above extends out of the white background, please open your window larger (perhaps full screen). Also, within the tour, if you click on the last sentence in each description, you should go to the next page.

More related pages:

Universe Table, An Ongoing Work

There are over 202.34 and as many as 205.11 notations. This table focuses on the Human Scale and notations 67 to 134-138. The Small Scale (1 to 67-69) and Large Scale (134-138 to 205) will follow after updates, verifications, and the footnotes have been completed for this first table.

Big Board – little universe, An Ongoing Work

This chart is 60″ x 12″ and it was the original depiction of the 202.34-to-205.11 notations.

• 15 Key Ideas May Be the Foundations of all this effort

May 2014:  Where we have been and where we might be going.

Propaedeutics

An analyze and opinions about the Universe Table and the Big Board – little universe

Concepts & Parameters

The simplest parameters of science and mathematics opened the way for this entire inquiry.

Introduction & Overview

The question was asked on December 19, 2011, “Why isn’t this stuff on the web someplace?” It seemed like somewhere in our midst was a fundamental logic flaw. Very cautiously, this page was put up on the web over on the Small Business School website so family and friends could be asked to read this introduction and caution us or encourage us along the way.

Proposed Wikipedia Article, April 2012.

To invite critical review and collaboration, this article was submitted and then publicly posted within Wikipedia back in April 2012 yet it was deleted in the first week of May. That original iteration was again published within Small Business School.

202.34: the calculations by Joe Kolecki, retired, NASA scientist

Joe Kolecki was the first person outside our little group of students to help. He provided us with this calculation in May 2012. Soon thereafter, the Argonne National Laboratory and Nikon Small World helped a little, too.

Just the numbers

This page provides all the numerations from the first Planck Length through all 202.34 doublings.

A little story

The background story about how this perception emerged and when it was introduced in high school geometry classes on that last day before the Christmas holidays, Monday, December 19, 2011.

What are we to believe?

Universals and constants can be applied to every belief system. If the belief system is unable to accommodate both, then it is incomplete.

First Principles

The conceptual foundations for this work start with the thrust or energy to make things better or more perfect.

May we turn to you for insight? That big chart on the left measures 62″ x 14″ so it can be a bit awkward to use at your desk. We wanted to present the data in a more simple format (to be printed on 8.5×11 inch paper or displayed on a smartphone) so we created the chart on the right. We are calling it, the Universe Table.  This is a long-term project, so we would like to ask a few questions to help us prioritize and focus on important things to do.

The large-scale universe seems so much more approachable. On the Big-Board-little universe chart every notation is listed. Within the Universe Table all the notations within the Human Scale are listed, but those within the small-scale are in groups of ten notations and within the large-scale they are also in groups of ten, each corresponding to one of the images from Andrew Colvin.

Your Views, Worldviews, Universe View. All views are important. Yet, some views are more optimistic, some are more creative, and some more productive. Our hypothesis is that those who balance their views with a strong worldview and a truly integrated universe view will be the most optimistic, creative and productive.

It is going to take us a long time to figure that out, so we need to get started.  We are asking our guests — “Would you please take a very quick, very simple survey, then go on the tour. On the right, you will see a green arrow. Just click on it to begin.

Both charts represent the same thing — the visible universe. The very smallest measurement is the Planck Length. The largest is the Observable Universe. From the smallest to the largest, there are less than 206 notations or steps. Click on each image to see the full-sized rendering.

Advertisements

Working Draft: Planck Time & Length and Base-2 Exponential Notation

Planck Time to the Age of the Universe
Planck Length to the Observable Universe

More articles (working-drafts):
Tilings & Tessellations         
Just what’s happening here?

PLEASE NOTE: This particular page was started early in December 2014; however, the work on the Planck Length began in December 2011.  We are still finding simple errors within the chart below, so this page will be subject to frequent updates.  Perhaps it goes without saying… as you read this note, I appeal to you to ask questions and make comments and suggestions. Thank you.   –Bruce Camber

Why this chart was finally initiated:  We were responding to a de facto challenge from Stefan Vandoren, a co-author of Time in Powers of Ten. When I asked about doing his chart in base-2, he wrote, “A base-2 variation of the book would probably increase the book length by a factor of thousand, as well as our writing time, so powers of ten was just fine for us.”

Base-2 is 3.33 times more granular than base-10 and it mimics nature.  There is a special magic in multiplying by 2.

Since doing the base-2 chart of the Planck Length in December 2011, we’ve asked several people if they had seen the base-2 progression from the Planck Time to the Age of the Universe.  Nobody had.  Because we could not find such a comparison (between the progressions from the Planck Time and the Planck Length using base-2 exponential notation through the successive doublings out to their given limits, i.e. the Age of the Universe and the Observable Universe respectively), we offer this chart for your analysis now. Our next step is to do the simple math for each of the Planck Units to see what we can see.

These doublings do kind-of, sort-of end up somewhat in synch. Considering the duration and the length, and the nature of very large measurements, for all intents and purposes, they are synched! Though these charts will be tweaked substantially, the best confirmation is at the notations (or doublings) that define a day in Planck Time units correspond closely to distance light travels in a day in Planck Length units. And, the doublings within the Planck Time column for the definition of a week correspond closely with the distance light travels in a week within the Planck Length column. And, finally, the doublings in the Planck Time column that define a year correspond closely with the distance light travels within a year in the Planck Length column. These are the first baby steps of analysis. How many hundreds of steps are there to go to discern all the faces of its meaning? Who knows? From here, we will continue to look to see what meaning and relation evolves at a  particular notation where one column appears to impart value to the other. Just on the surface, this chart seems to suggest that there are other possible views of the nature of space and time where order (sequence), continuity, symmetries, and relations seem to play a more fundamental role.

Science and our common sense worldview assume the primordial nature of space and time. As a result of our work with the Planck Units, we hold that conclusion up for further inspection. How do things appear as one begins to approach the Planck Length and Planck Time in synch? As we add more Planck Units to this chart, what else might we see? What might we learn? So, we will add mass, electric charge, and temperature to these listings. And then, we’ll add the derived Planck Units (12) and then ask, “Is there anything more we can do to establish a range from the smallest to the largest? What might a comparative analysis at each doubling reveal to us?

At this point, we are attempting to learn enough to make a few somewhat intelligent guesses.

So, as a result of where we are today, I think it is okay to ask the question, “What would the universe look like if space and time were derivative of order-continuity and relation-symmetry, and of ratios where the subject-object are constantly in tension?”

By the way, on May 10, 2010, the very smallest unit of measured time was experimentally demonstrated;  the result was 1.2 × 10−17 seconds. That is a long way from 10−44 seconds!  For more background, see: http://phys.org/news192909576.html

This stream of  consciousness continues at the very bottom of this chart.

Planck Time Doublings: Primarily in Seconds

Planck Length Doublings: Primarily in Meters

204

The Age of the Universe: 13.78 to 13.8 billion years

8.310×1026 m or Future Universe

203

It appears that we are in the earliest part of 201st doubling:1019

4.155×1026 m or Near Future Universe

202

6.9309178×1018 seconds (21.9777+ billion years)18

2.077×1026 m or in the range of the Observable Universe

201

346,545,888,147,200,000 seconds (10.9888+ billion years)

1.03885326×1026 m approaching the Observable Universe

200 18

173,272,944,073,600,000 seconds (5.49444+ billion years)

5.19426632×1025 m

199

86,636,472,036,800,000 seconds (2.747+ billion years)

2.59713316×1025 m

198

43,318,236,018,400,000 seconds (1.3736+ billion years)

1.29856658×1025 m

197

21,659,118,009,200,000 seconds (686.806+ million years) 17

6.49283305×1024 m

196

10,829,559,004,600,000 seconds (342.4+ million years)

3.24641644×1024 m

195

5,414,779,502,320,000 seconds (171.2+ million years)

1.62320822×1024 m

194

2,707,389,751,160,000 seconds (85.6+ million years)

8.11604112×1023 m

193

1,353,694,875,580,000 seconds (42.8+ million years)

4.05802056×1023 m

192

676,847,437,792,000 seconds (21.4+ million years)

2.02901033×1023 m

191

338,423,718,896,000 seconds (10.724+ million years)

1.01450514×1023 m

19015

18914

18814

18714

18614

18513

18413

18313

18212

18112

169,211,859,448,000 seconds (5.3+ million years) 15

84,605,929,724,000 seconds (2.6+ million years) 14

42,302,964,862,000 seconds (1.3+ million years) 14

21,151,482,431,000 seconds (640+ thousand years) 14

10,575,741,215,500 seconds (320+ thousand years) 14

5,287,870,607,760 seconds (160+ thousand years) 13

2,643,935,303,880 seconds (83.7+ thousand years) 13

1,321,967,651,940 seconds (41.8+ thousand years) 13

660,983,825,972 seconds (20.9+ thousand years) 12

330,491,912,986 seconds (or about 10,472.9 years) 12

5.07252568×1022 m

2.53626284×1022 m

1.26813145 x1022 m

6.34065727×1021 m

3.17032864×1021 m or 3 Zettameters or 310,000 ly

1.58516432×1021 m or about 150,000 ly (1.5z)

7.92582136×1020 m

3.96291068×1020 m

1.981455338×1020 m

9.90727664×1019 meters

18012

17911

17811

17711

17611

17510

17410

17310

1729

171. 9

165,245,956,493 seconds 12

82,622,978,246.4 seconds 11

41,311,489,123.2 seconds 11

20,655,744,561.6 seconds 11

10,327,872,280.8 seconds 11

5,163,936,140.4 seconds 10

2,581,968,070.2 seconds 10

1,290,984,035.1 seconds 10

645,492,017.552 seconds 9

322,746,008.776 seconds 9

4.95363832×1019 m

2.47681916×1019 m

1.23840958×1019 m

6.19204792×1018 m

3.09602396×1018 m

1.54801198×1018 m

7.74005992×1017 m

3.87002996×1017 m

1.93501504 x1017 m

9.67507488×1016 m

1709

1698

1688

1678

1668

1657

1647

1637

1626

1616

161,373,004.388 seconds 9

80,686,502.194 seconds 8

40,343,251.097 sec 8(466 days)(Note: 31,536,000 s/year)

20,171,625.5485 seconds (233.468 days)8

10,085,812.7742 seconds (116.73 days)8

5,042,906.38712 seconds (58.36+)107

2,521,453.19356 s (29.1835 days)

1,260,726.59678 s (14.59+ days) 107

630,363.29839 s (7.29+ days) 106

315,181.649195 seconds (3.64794 days) 106

4.83753744×1016 m

2.41876872×1016 m

1.20938436×1016 m

6.0469218×1015 m [one light year (ly) is 9.4×1015 m]

3.0234609×1015 m

1.5117305×1015 m

7.55865224×1014 m

3.77932612×1014 m

1.88966306×1014 m (about 7-day light travel)

9.44831528×1013 m

1606

1595

1585

1575

1564

1554

1544

1534

1523

1513

157,590.824598 s (1.82 days)106

78,795.4122988 s (.911984 days) 105

39,397.7061494 seconds 105

19,698.8530747 seconds 105

9849.42653735 seconds 104

4924.71326867 seconds(3600 s in hour)104

2462.35663434 seconds 104

1231.17831717 seconds104

615.589158584 seconds (10.259+ minutes)103

307.794579292 seconds 103

4.72415764×1013 m

2.36207882×1013 m (or close to 24-hour light travel)

1.18103945×1013 m

5.90519726×1012 m

2.95259863×1012 m

1.47629931×1012 m

738,149,657 kilometers 1011

369,074,829 kilometers 1011

184,537,414 kilometers 1011

92,268,707.1 kilometers (range of earth-to-sun)1010m

1503

1492

1482

1472

1461

1451

1441

1431

142−1

141−1

153.897289646 seconds 103

76.948644823 s (16+ sec over 1 min) 102

38.4743224115 s (21.53 sec to 1 min) 102

19.2371612058 seconds

9.61858060288 seconds

4.80929030144 seconds 10?

2.40464515072 seconds 10?

1.20232257536 s (1s ≠ perfect tp multiple) 10?

6.0116128768×10−1 seconds

3.0058064384×10−1 seconds

46,134,353.6 kilometers 1010

23,067,176.8 kilometers 1010

11,533,588.4 kilometers 1010

5,766,794.2 kilometers 109

2,883,397.1 kilometers 109

1,441,698.55 kilometers 109 m

720,849.264 kilometers 108

360,424.632 kilometers108 m

180,212.316 kilometers (111,979+ miles)108 m

90,106.158 kilometers 107 m

140−1

139−2

138−2

137−2

136−2

135−3

134−3

133−3

132−4

131−4

1.5029032192×10−1 seconds

7.514516096×10−2 seconds

3.757258048 × 10−2 seconds

1.878629024 × 10−2 seconds

9.39314512 × 10−3 seconds

4.69657256 × 10−3 seconds

2.34828628 × 10−3 seconds

1.174143145978 × 10−3 seconds

5.8707157335 × 10−4 seconds

2.93535786675 × 10−4 seconds

45,053.079 kilometers 107

22,526.5398 kilometers 107

11,263.2699 kilometers or about 7000 miles

5631.63496 kilometers 106

2815.81748 kilometers 106

1407.90874 kilometers (about 874 miles )106m

703.954368 kilometers 105

351.977184 kilometers (218.7 miles 105

175.988592 kilometers (109.35 miles )105

87.994296 kilometers 104

130−4

129−5

128−5

127−5

126−5

125−6

124−6

123−6

122−7

121−7

1.46767893338 × 10−4 s

7.33839466688 × 10−5s

3.66919733344 × 10−5 s

1.83459866672× 10−5 s

9.1729933336 × 10−6 s

4.5864966668 × 10−6 s

2.2932483334 × 10−6 s

1.1466241667 × 10−6 s

5.73312083348 × 10−7 s

2.86656041674 × 10−7 s

43.997148 kilometers 104

21.998574 kilometers104

10.999287 kilometers or within 6.83464 miles104

5.49964348 kilometers 103

2.74982174 kilometers 103

1.37491087 kilometers 103

687.455439 meters 102

343.72772 meters or about 1128 feet 102

171.86386 meters or about 563 feet 102

85.9319296 meters 101

120−7

119−8

118−8

117−8

116−9

115−9

114−9

113−9

112−10

111−10

1.43328020837 × 10−7 s

7.16640104186 × 10−8 s

3.58320052093 × 10−8 s

1.79160026046 × 10−8 seconds

8.95800130232 × 10−9 seconds

4.47900065116 × 10−9 seconds

2.23950032558 × 10−9 seconds

1.11975016279 × 10−9 seconds

5.59875081396 × 10−10 seconds

2.79937540698 × 10−10 seconds

42.9659648 meters 101

21.4829824 meters 101

10.7414912 meters or 35.24 feet or 1.074×101 m100

5.3707456 meters 100

2.6853728 meters or 105.723 inches 100

1.3426864 meters or 52.86 inches 100

67.1343176 cm (19.68+ inches or 6.71×10-1

33.5671588 centimeters or 3.356×10-1 m

16.7835794 centimeters or 1.6783×10-1

8.39178968 cm (3.3+ inches or 8.39×10-2 m

110−10

109−11

108−11

107−11

106−12

105−12

104−12

103−12

102−13

101−13

1.39968770349 × 10−10 seconds

6.99843851744 × 10−11 seconds

3.49921925872 × 10−11 seconds

1.74960962936 × 10−11 seconds

8.7480481468 × 10−12 seconds

4.3740240734 × 10−12 seconds

2.1870120367 ×10−12 seconds

1.09350601835 ×10−12 seconds

5.46753009176 ×10−13 seconds

2.73376504588 × 10−13 seconds

4.19589484 centimeters 4.19589484×10-2 m

2.09794742 centimeters or 2.0979×10-2 m

1.04897 centimeters or 1.04897375×10-2 m

5.24486856 mm (about 1/4 inch) or 5.24×10-3 m

2.62243428 millimeters or 2.62243428×10-3 m

1.31121714 millimeters 1.31121714×10-3 m

.655608568 millimeters or 6.55608568×10-4 m

.327804284 millimeter or 3.27804284 x10-4 m

.163902142 millimeters or 1.63902142×10-4 m

81.9510712 microns or 81.9510712 x10-5 m

100−13

99−14

98−14

97−14

96−15

95−15

94−15

93−15

92−16

91−16

1.36688252294 × 10−13 seconds

6.83441261472 × 10−14 seconds

3.41720630736 × 10−14 seconds

1.70860315368 × 10−14 seconds

8.5430157684 × 10−15 seconds

4.2715078842 × 10−15 seconds

2.1357539421 × 10−15 seconds

1.06787697105 × 10−15 seconds

5.33938485524 × 10−16 seconds

2.66969242762 × 10−16 seconds

40.9755356 microns or 4.09755356 x10-5 m

20.4877678 microns or 2.04877678×10-5 m

10.2438839 microns or 1.02438839×10-5 m

5.12194196 microns (.0002+ inches or 5.12×10-6 m

2.56097098 microns or 2.56097098×10-6 m

1.28048549 microns or 1.2804854×10-6 m

640.242744 nanometers 6.40242744×10-7 m

320.121372 nanometers 3.20121372×10-7 m

160.060686 nanometers or 1.60×10-7 m

80.0303432 nanometers or 8.00×10-8 m

90−16

89−17

88−17

87−17

86−18

85−18

84−18

83−18

82−192

81−192

1.33484621381 × 10−16 seconds

6.67423106904 × 10−17 seconds

3.33711553452 × 10−17 seconds

1.66855776726 × 10−17 seconds  (smallest measurement – 2010)

8.34278883632 × 10−18 seconds

4.17139441816 × 10−18 seconds

2.08569720908 × 10−18 seconds

1.04284860454 × 10−18 seconds

5.21424302272 × 10−19 seconds

2.60712151136 × 10−19 seconds

40.0151716 nanometers or 4.00×10-8 m

20.0075858 nanometers or 2.00×10-8 m

1.00037929×10-8 meters or 10 nanometers

5.00189644×10-9 meters

2.50094822 nanometers or 2.50094822×10-9 m

1.25474112 nanometers or 1.25×10-9 m

.625237056 nanometers or 6.25237056×10-10 m

.312618528 nanometers or 3.12×10-10 m

.156309264 nanometers or 1.563×10-10 m

7.81546348×10-11 m

80−19

79−20

78−20

77−20

76−21

75−21

74−21

73−21

72−22

71−22

1.30356075568 × 10−19 seconds

6.5178037784 × 10−20 seconds

3.2589018892 × 10−20 seconds

1.6294509446 × 10−20 seconds

8.147254723 × 10−21 seconds

4.0736273615 × 10−21 seconds

2.03681368075 × 10−21 seconds

1.01840684038 × 10−21 seconds

5.09203420188 × 10−22 seconds

2.54601710094 × 10−22 seconds

3.90773174×10-11 m

1.95386587×10-11 m

9.76932936×10-12 m

4.88466468×10-12 m

2.44233234×10-12 m

1.22116617×10-12 m

6.10583084×10-13 m

3.05291542×10-13 m

1.52645771×10-13 m

7.63228856×10-14 m

70−22

69−23

68−23

67−23

66−24

65−24

64−24

63−25

62−25

61−25

1.27300855047 × 10−22 seconds

6.36504275236 × 10−23 seconds

3.18252137618 × 10−23 seconds

1.59126068809 × 10−23 seconds

7.95630344044 × 10−24 seconds

3.97815172022 × 10−24 seconds

1.98907586011 × 10−24 seconds

9.94537930056 × 10−25 seconds

4.97268965028 × 10−25 seconds

2.48634482514 × 10−25 seconds

3.81614428×10-14 m

1.90807214×10-14 m

9.54036072×10-15 m

4.77018036×10-15 m

2.38509018×10-15 m

1.19254509×10-15 m

5.96272544×10-16 m

2.98136272×10-16 m

1.49068136×10-16 m

7.45340678×10-17 m

60−25

59−26

58−26

57−26

56−27

55−27

54−27

53−28

52−28

51−28

1.24317241257 × 10−25 seconds

6.21586206284 × 10−26 seconds

3.10793103142 × 10−26 seconds

1.55396551571 × 10−26 seconds

7.76982757856 × 10−27 seconds

3.88491378928 × 10−27 seconds

1.94245689464 × 10−27 seconds

9.7122844732 × 10−28 seconds

4.8561422366 × 10−28 seconds

2.4280711183 × 10−28 seconds

3.72670339×10-17 m

1.86335169×10-17 m

9.31675848×10-18 m

4.65837924×10-18 m

2.32918962×10-18 m

1.16459481×10-18 m

5.82297404×10-19 m

2.91148702×10-19 m

1.45574351×10-19 m

7.27871756×10-20 m

50−28

49−29

48−29

47−29

46−30

45−30

44−30

43−31

42−31

41−31

1.21403555915 × 10−28 seconds

6.07017779576 × 10−29 seconds

3.03508889788 × 10−29 seconds

1.51754444894 × 10−29 seconds

7.58772224468 × 10−30 seconds

3.79386112234 × 10−30 seconds

1.89693056117 × 10−30 seconds

9.48465280584 × 10−31 seconds

4.74232640292 × 10−31 seconds

2.37116320146 × 10−31 seconds

3.63935878×10-20 m

1.81967939×10-20 m

9.09839696×10-21 m

4.54919848×10-21 m

2.27459924×10-21 m

1.13729962×10-21 m

5.68649812×10-22 m

2.84324906×10-22 m

1.42162453×10-22 m

7.10812264×10-23 m

40−31

39−32

38−32

37−32

36−33

35−33

34−33

33−34

32−34

31−34

1.18558160073 × 10−31 seconds

5.92790800364 × 10−32 seconds

2.96395400182 × 10−32 seconds

1.48197700091 × 10−32 seconds

7.40988500456 × 10−33 seconds

3.70494250228 × 10−33 seconds

1.85247125114 × 10−33 seconds

9.26235625568 × 10−34 seconds

4.63117812784× 10−34 seconds

1.15779453196× 10−34 seconds

3.55406132×10-23 m

1.77703066×10-23 m

8.88515328×10-24 m

4.44257664×10-24 m

2.22128832×10-24 m

1.11064416×10-24 m

5.5532208×10-25 m

2.7766104×10-25 m

1.3883052×10-25 m

6.94152599×10-26 m

3.47076299×10-26 m

30−35

29−35

28−35

27−36

26−36

25−36

24−37

23−37

22−37

21−37

5.78897265978 × 10−35 seconds

2.89448632989 × 10−35 seconds

1.44724316494 × 10−35 seconds

7.23621582472 × 10-36 seconds

3.61810791236 × 10−36 seconds

1.80905395618 × 10−36 seconds

9.045269781089 × 10−37 seconds

4.522263489044 × 10−37 seconds

2.26131744522 × 10−37 seconds

1.13065872261 × 10−37 seconds

1.735381494×10-26 m

8.67690749×10-27 m

4.3384537×10-27 m

2.16922687×10-27 m

1.0846134×10-27 m

5.42306718×10-28 m

2.711533591×10-28 m

1.35576679×10-28 m

6.77883397×10-29 m

3.38941698×10-29 m

20−38

19−38

18−38

17−38

16−39

15−39

14−40

13−40

12−40

11−40

5.65329361306 × 10−38 seconds

2.82646806528 ×10−38 seconds

1.41323403264 ×10−38 seconds

7.0661701632 × 10−39 seconds

3.530850816 × 10−39 seconds

1.7665425408 × 10−39 seconds

8.832712704 × 10−40 seconds

4.416356352 × 10−40 seconds

2.208178176 × 10−40 seconds

1.104089088 × 10−40 seconds

1.69470849×10-29 m

8.47354247×10-30 m

4.2367712×10-30 m

2.11838561×10-30 m

1.05919280×10-30 m

5.29596404×10-31 m

2.64798202×10-31 m

1.32399101×10-31 m

6.6199550×10-32 m

3.30997752×10-32 m

10−40

9−41

8−41

7−41

6−42

5−42

4−42

3−43

2−43

1−43

5.52044544 × 10−41 seconds

2.76022272 × 10−41 seconds

1.38011136 × 10−41 seconds

6.9005568 × 10−42 seconds

3.4502784 × 10−42 seconds

1.7251392 × 10−42 seconds

8.625696 × 10−43 seconds

4.312848 × 10−43 seconds

2.156424 × 10−43 s The second doubling

1.078212 × 10−43 s The first doubling

1.65498876×10-32 m

8.27494384×10-33 m

4.1374719232×10-33 m

2.0687359616×10-33 m

1.03436798×10-33 m

5.17183990×10-34 m

2.58591995×10-34 m

1.29295997×10-34 m

6.46479988×10-35 meters

3.23239994×10-35 m The first doubling, step, or layer.

5.39106(32)×10−44 seconds 1.616199(97)x10-35 meters

The Planck Time

The Planck Length

Endnotes:

1. We are in the process of refining this chart and will be throughout 2015 and 2016.

2. Our very first calculation with the Planck Length column (December 2011), resulted in 209 doublings! We found several errors. Then , with help of a NASA astrophysicist, Joe Kolecki (now retired), we updated our postings with his calculation of 202.34. Then, a French Observatory astrophysicist, Jean-Pierre Luminet, calculated 205.1 doublings. We are very open to all ideas and efforts! We are studying the foundations of foundations. One might call it a hypostatic science based on the simplest mathematics, simple geometries and observations about the way the universe coheres.

One might say, “The Finite is finite, the Infinite is the Infinite, and the constants and universals describe the boundary conditions and transformations between each. One manifests a panoply of perfections; the other has only momentary instants of perfection.”

Open Questions:

What is a second?

What are Planck Units?

What is time?

What is a meter?

What is length?

What is space?

What happens just before the Planck time at 10-44 seconds? Theorists say that all of the four fundamental forces are presumed to have been unified into one force. All matter, energy, space and time “explode” from the original singularity.

3. Our online “Google” calculator often rounds up the last digit. It is usually beyond the eleventh postion to the right of the decimal point.

4. For more about this place and time, go to Hyperphysics (Georgia State): http://hyperphysics.phy-astr.gsu.edu/hbase/astro/planck.html

5. A copy of this chart has also been published in the following locations:

    a. https://walktheplanck.wordpress.com/2014/12/09/base/

    b. http://utable.wordpress.com/2014/12/12/planck/

    c. http://SmallBusinessSchool.org/page3053.html

    d. ResearchGate                           Documents: 3052, 3054, 3056

Tour #2 Step 3: Extremely-Small and Extremely-Large Numbers

 

 

1

Let us start with the two key numbers:
1. The Planck Length: 1.61619926×10-35 meters which is 0.0000000000000000000000000000000000161619926 meters

2. The Observable Universe: 8.79829142×1026meters or 87,982,914,200,000,000,000,000,000,000,000,000 meters

There are many numbers in between the two. Each “0” represents a major base-10 transformation; and within each base-10, there are three or four base-2 notations. Though some say that the Planck Length is a special type of singularity, it has a specific length. Yet, that length is so small, for about 100 years, it was virtually ignored by the entire scientific community. Perhaps a better way of looking at the Planck Length is through the lenses of geometry. If we make it one of Alfred North Whitehead’s point-free vertices of a specific length, each time we multiply by two we grow the size as well as the number of vertices.

The Numbers of Vertices at Key Notations Between 1 and 65. When you assume that the Planck Length is a vertex, unusual concepts flow. First, consider the generation of vertices just by multiplying by 2, then each result by two, over and over again. By the tenth doubling there are 1024 vertices. By the 20th doubling, over a million more are added. On the 30th, another billion+ are added. Then, comes another trillion+ at the 40th, a quadrillion+ at the 50th notation and a quintillion+ at the 60th. At the 61st there are another 2+ quintillion vertices added. These vast arrays and systems of vertices cannot be observed.

This is the domain of postulations and hypostatizations. Consider this concept: going within from about the 65th notation, the domains begin to be shared. More and more is shared by everything as the Planck Length approaches. Each notation organizes uniquely, yet within groups. And these natural groupings reflect all the diversity within all the notations 65 and higher. It seems that the mathematics of cellular automaton may figure into the first 20 or 30 notations. We start with the most basic Forms, then Structures, which become the pre-structure for Substances, archetypes for Qualities, then Relations, then the Mind. We turn to systems theory, group theory, and set theory to discern the order of things.

Perhaps there are five hot spots for immediate research:
* Notations 1-20 and the foundations of cellular automaton and fractal geometries by using the functions created by more than one million vertices
* Notations 50-60 and the foundations of the Mind, logic, psychology, memory, thought, epistemology and learning with over 500 trillion vertices at the 59th notation and then another quintillion+ vertices within the 60th notation.
* Notations 60-80, the emergence of the particles and atoms and the most basic structures of all physical matter
* Notations 100-103, the emergence of the human life and most all life as we know it
* Notations 135-138, the transition to the Large-Scale Universe with the possibilities of uncovering pathways to the Einstein-Rosen bridges and tunnels also known as wormholes.
Key references for more: The numbers

Facts & Guesses. The Facts are what is measurable and what fits within each domain. The Guesses are about what goes on with those domains (aka steps, notations, layers or doublings) especially those that remain blank. Is there a pattern, especially a cyclic pattern that manifests in another notation? We followed Max Planck where he took the constants of nature, starting with the speed of light to calculate the smallest number. We took the age of the universe, with some help from scientists, to learn the largest calculation of a length, the Observable Universe. Making sense of these numbers is another story. So, over the forthcoming weeks, months and years, we will be looking even deeper. Would you help us now and take the little survey? Green Arrow

Pink Arrow

________________________________________________________________________________________

Notes about Look-and-feel and Navigation: If a little thumbnail of any picture is displayed, simply refresh your browser and the full-size version hopefully will paste in. Also, if any of the letters from right column, particularly the Archives and Meta listings, are bleeding through the image of the Universe Table, please open your window larger (possibly to full screen). Usually if you click on the last sentence in each description you will go to the next page.

More notes about the how these charts came to be:
1Three downloads authored by Prof. Dr. Frank Wilczek: Scaling Mt. Planck (from Columbia University), C. Alden Mead’s letter and Wilczek’s response in Physics Today, and Wilczek’s August 2013 Lecture notes on units and magnitude (If you like this paper, also read this one).

The simple conceptual starting points
An article (unpublished) to attempt to analyze this simple model. There are pictures of a tetrahedron and octahedron.
A background story: It started in a high school geometry class on December 19, 2011.
The sequel: Almost two years later, a student stimulates the creation of this little tour.

Wikipedia on the Planck length
Wikipedia on the Observable Universe